BEACON MODULE:

#include

/* Variables */

/I The previous beacon event.

static Event t lastEvent = NO_EVENT;
// The current beacon event.

static Event_t thisEvent=NO_EVENT;

/* Functions */
/* Returns a BEACON_ON event if the phototransistor signal is between the specified thresholds.
* Otherwise, will return BEACON_OFF event. Will only return event if different from previous.*/
Event t BEACON_CheckForBeacon() {
If AD readout on BEACON_BIT is between high and low thresholds, return BEACON_ON event.
Else, return BEACON_OFF.

If event is same as before, return NO_EVENT.

EVENTS MODULE:

#include

/* Functions */
/* Checks and returns any events that have occurred. */
Event t EVENTS_CheckForEvents(void) {

//Check if command given

//Check if a timer expired

//Check if tape event has occured

//Check if beacon event has occured

/lotherwise return NO_EVENT

/* Checks all timers and if any has expired, clear the timer and return the corresponding event. */
static Event_t CheckForTimerExpired() {
if timer is expired,
clear timer
return expired event

otherwise return NO_EVENT

MAIN MODULE:

#include
#pragma LINK INFO DERIVATIVE "SampleS12"

/* Functions */
void main (void) {
//nitialize timers
//Initialize PWM
//nitialize ports

ME218b: Lab 8 Pseudocode
Nina Joshi, Andi Kleissner, Eli Michaels, Elico Teixeira

//Initialize SPI communication

//Uncomment the following line to debug and not run the state machine.
//IMAIN_Debug();

//nitialize the state machine and loop forever to run it.
STATE InitStateMachine();
for(s;) {
STATE_RunStateMachine(EVENTS_CheckForEvents());
}
}

/* Initialize port data directions for outputs and inputs, initialize pwms, and set opto output low. */
static void MAIN_Init(void) {

//set outputs

//clear inputs

//ad port initialization string

//set initial wheel state

PWM MODULE:

#include

/* Prototypes */
static void SetDuty(unsigned char duty, unsigned char wheel);
static void SetDirection(unsigned char direction, unsigned char wheel);

/* Functions */

/* Initializes PWM functions for wheels. */

void PWM_Init(void) {
//initializes port UO to be used by the PWM subsystem
//lenable PWM channel 0 for left wheel
//initializes port U1 to be used by the PWM subsystem
//lenable PWM channel 1 for right wheel

//give UO pin control to PWM subsystem for left wheel
//give U1 pin control to PWM subsystem for right wheel

//10 kHz
/Iprescale factor 16
//set to clock A

//set left wheel period in ticks
//set right wheel period in ticks

}

/* Sets PWM specifically for wheels: which wheel, duty cycle, and which direction. */
void PWM_ SetDuty(unsigned char wheel, unsigned char duty, unsigned char direction) {
SetDirection(direction, wheel);
SetDuty(duty, wheel);

}

ME218b: Lab 8 Pseudocode
Nina Joshi, Andi Kleissner, Eli Michaels, Elico Teixeira

/* Sets rotational direction of a particular wheel. */
static void SetDirection(unsigned char direction, unsigned char wheel) {
if left wheel,
if direction is forward,
set LEFT_DIR BIT
set polarity to low
else if direction is reverse,
clear LEFT DIR BIT
set polarity to high
else if right wheel,
if direction is forward,
clear RIGHT DIR BIT
set polarity to high
else if direction is reverse,
set RIGHT DIR BIT
set polarity to low

}

/* Sets duty cycle of a particular wheel. */
static void SetDuty(unsigned char duty, unsigned char wheel) {
if left wheel, set duty as a fraction of the period in clock ticks
else if right wheel, set duty as a fraction of the peiod in clock ticks

SPI MODULE:

Module level variables
This command
Last command

Initialize the e128’s PSI:
Set Baud rate to the slowest
SPPR = 8 and SPR= 8§
Enable SPI
Set MSB first
Set master
Set polarity active low
Set sample even edges
Enable SS pin (set MODFEN and SSOE)
Enable Receive register ready interrupt

Set up an output compare
Set channel and period to query command chip

Enable interrupts

NEW COMMAND
If the latest command is different that the last time we checked
Update the last command = command
Return NEW_COMMAND
Else return NO_EVENT

GET COMMAND
Return command

ME218b: Lab 8 Pseudocode
Nina Joshi, Andi Kleissner, Eli Michaels, Elico Teixeira

OC interrupt:

Clear OC flag

Set next output compare
Send 0xAA to SPI system

SPI interrupt:
Static ping
Static readnewcommand
If we had previously not read OxFF
If this is a ping READ garbage
Set ping no
Read SPISR
Read the SPIDR
Send for new request: by writing 0XAA again to SPIDR
Else get the real data
Set ping yes
Read SPISR
Read the SPIDR
If we received OxFF
Then set readnewcommand = yes
If readnewcommand is yes (we just got 0xFF)
If this is a ping READ garbage
Set ping no
Read SPISR
Read the SPIDR
Send for new request: by writing 0XAA again to SPIDR
Else get the real data
Set ping yes
Read SPISR
Read the SPIDR
Switch on read to give us:
Command
Set readnewcommand = no;

STATE MODULE:

#include

/* Variables */
static State t state;

/* Prototypes */

static void StopBothState(Event t event);
static void RotateCW90State(Event t event);
static void RotateCW45State(Event t event);
static void RotateCCW90State(Event_t event);
static void RotateCCW45State(Event_t event);
static void ForwardHalfState(Event t event);
static void ForwardFullState(Event_t event);
static void ReverseHalfState(Event_t event);
static void ReverseFullState(Event_t event);
static void AlignWithBeaconState(Event t event);

ME218b: Lab 8 Pseudocode
Nina Joshi, Andi Kleissner, Eli Michaels, Elico Teixeira

static void ForwardUntilTapeState(Event t event);

/* Initialize state machine by setting initial state and final destination. */
void STATE InitStateMachine() {

set initial state
}

/* Figure out which state we are in, and call the corresponding function to handle the event. */
void STATE RunStateMachine(Event t event) {
switch (state) {

if STOP_BOTH,
StopBothState(event);

if ROTATE_CW_90,
RotateCW90State(event);

if ROTATE _CW_45,
RotateCW45State(event);

if ROTATE_CCW_90,
RotateCCW90State(event);

if ROTATE_CCW _45,
RotateCCW45State(event);

if FORWARD HALF,
ForwardHalfState(event);

if FORWARD FULL,
ForwardFullState(event);

if REVERSE HALF,
ReverseHalfState(event);

if REVERSE FULL,
ReverseFullState(event);

if ALIGN_WITH BEACON,
AlignWithBeaconState(event);

if FORWARD_ UNTIL TAPE,
ForwardUntilTapeState(event);

}

/* On entering function, stops both wheels until a new command is given. */
static void StopBothState(Event t event) {

if first time this state is entered, stop both wheels

if event is NEW_COMMAND, get command and set it as state

}

/* On entering function, rotates clockwise 90 degrees and sets timer. If the timer expires,
* will switch to stop state. Otherwise, will switch to next given command state. */
static void RotateCW90State(Event t event) {

if first time this state is entered, rotate wheels clockwise and initialize timer

if event is ROTATE90 TIMER EXPIRED, set state to STOP_BOTH

if event is NEW_COMMAND, get command and set it as state

}

/* On entering function, rotates clockwise 45 degrees and sets timer. If the timer expires,
* will switch to stop state. Otherwise, will switch to next given command state. */
static void RotateCW45State(Event t event) {

if first time this state is entered, rotate wheels clockwise and initialize timer

if event is ROTATE45 TIMER EXPIRED, set state to STOP_BOTH

if event is NEW_COMMAND, get command and set it as state

ME218b: Lab 8 Pseudocode
Nina Joshi, Andi Kleissner, Eli Michaels, Elico Teixeira

/* On entering function, rotates counterclockwise 90 degrees and sets timer. If the timer
* expires, will switch to stop state. Otherwise, will switch to next given command state. */
static void RotateCCW90State(Event t event) {

if first time this state is entered, rotate wheels counterclockwise and initialize timer

if event is ROTATE90 _TIMER EXPIRED, set state to STOP_ BOTH

if event is NEW_COMMAND, get command and set it as state

}

/* On entering function, rotates counterclockwise 45 degrees and sets timer. If the timer
* expires, will switch to stop state. Otherwise, will switch to next given command state. */
static void RotateCCW45State(Event t event) {
if first time this state is entered, rotate wheels counterclockwise and initialize timer
if event is ROTATE45 TIMER EXPIRED, set state to STOP_BOTH
if event is NEW_COMMAND, get command and set it as state

}

/* On entering function, rotates both wheels forward at half duty until a new command is given. */
static void ForwardHalfState(Event t event) {

if first time this state is entered, rotate wheels forward with half duty

if event is NEW_COMMAND, get command and set it as state

}

/* On entering function, rotates both wheels forward at full duty until a new command is given. */
static void ForwardFullState(Event t event) {

if first time this state is entered, rotate wheels forward with full duty

if event is NEW_COMMAND, get command and set it as state

}

/* On entering function, rotates both wheels reverse at half duty until a new command is given. */
static void ReverseHalfState(Event _t event) {

if first time this state is entered, rotate wheels reverse with half duty

if event is NEW_COMMAND, get command and set it as state

}

/* On entering function, rotates both wheels reverse at full duty until a new command is given. */
static void ReverseFullState(Event t event) {

if first time this state is entered, rotate wheels reverse with full duty

if event is NEW_COMMAND, get command and set it as state

}

/* On entering function, rotates clockwise. If beacon is seen, will switch to stop state.
* Otherwise, will switch to next given command state. */
static void AlignWithBeaconState(Event t event) {

if first time this state is entered, rotate wheels clockwise

if event is BEACON_ON, set state to STOP_BOTH

if event is NEW_COMMAND, get command and set it as state

}

/* On entering function, rotates both wheels forward. If tape is found, will switch
* to stop state. Otherwise, will switch to next given command state. */
static void ForwardUntilTapeState(Event t event) {

if first time this state is entered, rotate wheels forward at full duty

if event is TAPE_FOUND, set state to STOP_BOTH

if event is NEW_COMMAND, get command and set it as state

ME218b: Lab 8 Pseudocode
Nina Joshi, Andi Kleissner, Eli Michaels, Elico Teixeira

TAPE MODULE:

#include libraries

#define

/* Variables */

static Event_t lastEvent = NO_EVENT;
static Event_t thisEvent=NO_EVENT;

/* Functions */
/* Returns a TAPE_FOUND event if the tape sensor signal greater than the specified threshold. */
Event t TAPE CheckForTape() {
if the TAPE BIT A/D readout is higher than a specified threshold, return TAPE_ FOUND.
else return NO_EVENT.

TIMER MODULE:

Module Level Variables:

timer((unsigned int) used to keep track of Timer overflows by using the Input Capture

Period (unsigned int) based on the 43.69mS overflow, or 1.5 MHz clock

flag0_X (of type Flags_t) where X ranges from 0 to 7 used to keep track of whether the time has expired
for each of the four timers

flagact0 X (of type Flags t) where X ranges from 0 to 7 flags used to keep track of whether the time has
expired for each of the four timers

NewTime0O X (unsigned int) where X ranges from 0 to 7 and the new time keeps track of the time each of
the four timers will be checking to be expired.

Function: TIMERO_Init(unsigned char NewRate)

This function turns timer system on and sets the timer to count at a certain rate using the

TIMER RATE XX definitions:

Turn the timer system on

Set TSCR2: divide by 16, so timer overflow occurs every 43.69mS

Use a switch statement to set the timer period, where 1mS = 1500, 2mS = 3000, 4ms = 6000, etc. and we
set the variable Period equal to this number.

Setup OC4 to time the updates, and to trigger the first interrupt that will keep track of these times
Set IOC4 of the timer to be an output compare, the rest remain as inputs

Set no pin connected to IOC4, which means pin PTO remains free

Set the first output capture to happen one "Period" into the future

Clear the flag for the IOC4

Enable the interrupt for I0C4

Enable interrupts

Interrupt Response for Timer 10C4:

This interrupt will be keeping track for timer0O channel 4, and will be setting flags for timer0 on channel 4-7
which will allow the TIMERO_InitTimer(TimerNumber, TicksToCount) function to let the user know if the
timer is expired:

interrupt _Vec_timOch4 TimerOCounter (void)

Clear the flag for the IOC4

Update for the next interrupt to keep track of the ticking rate

Enablelnterrupts

Add one to timer0 to indicate that one clock tick has passed by

Now we check to see if any of the flags have expired and update:

ME218b: Lab 8 Pseudocode
Nina Joshi, Andi Kleissner, Eli Michaels, Elico Teixeira

If timerO is equal to newtime0_x and flagact0 X is active then
Set flag0 X to set
Set flagact0 X to not active

Repeat this if statement for all the X timers, 0 through 7

Function: TIMERO_InitTimer
This function will take in two paramaters, the first a char Num which will choose which timer we are
starting/restarting, and the second an unsigned int NewTime which will give the number of ticks until that
timer is expired. Everytime this function is called, that timer will start counting up to the the number of
NewTime ticks that it is asked for. The user must be sure that this NewTime of ticks does not pass the
overflow otherwise this will be inaccurate.

TIMERO_InitTimer(unsigned char Num, unsigned int NewTime)

Use a switch statement to choose which timer that the user wants by the timer number and be sure to

set the NewTime for that timer as well as to clear its flag, then for Case X (0 through 7):

Set NewTime0 X equal to timer0 plus the input New Time;

Set flag0 X to be cleared

Set flagact0 X to be active

Function: TIMERO_IsTimerExpired
Checks to see if the the timer associated with the parameter input Num has expired (which clock, 0-7), the
number of the timer to test. This function will return TIMERO EXPIRED or TIMERO NOT_EXPIRED, or
TIMERO ERR
TimerReturn_t TIMERO_IsTimerExpired(unsigned char Num)
Use a switch statement to choose which timer that the user wants to check and then return on the basis of
whether it has expired or not, so for each case X:
If flag0_X is set then
Return timer0 is expired
Else if flag0 X is cleared
Return timer0 is not expired
Else
Return timer error

Function: TIMERO_ClearTimerExpired

This takes as a paramater an unsigned char Num which chooses which timer flag that we want to clear.
This can be used to show that an event has been serviced.

TIMERO_ClearTimerExpired(unsigned char Num)

Again we use a switch statement to choose which timer that the user wants to clear and clear the according
flag, so for each case X:

Set flag0 0 to be cleared

Function: TIMERO_GetTime

This function takes in no parameters, and will return an unsigned int representing the current clock count
which will be between 0 and 65535. It simply returns the free-running counter of timer0.

unsigned int TIMERO_GetTime(void)

Return the value for timer0

WHEELS MODULE:

#include libraries
#define

/* Functions */
/* Stop both wheels */

ME218b: Lab 8 Pseudocode
Nina Joshi, Andi Kleissner, Eli Michaels, Elico Teixeira

void WHEELS StopBoth(void) { //0x00
set duty on left wheel to 0
set duty on right wheel to 0

}

/* Rotate wheels clockwise */

void WHEELS RotateCW(void) { //0x02 and 0x03 - adjust timers for degree
set direction on left wheel to forward
set direction on right wheel to reverse

}

/* Rotate wheels counterclockwise */

void WHEELS RotateCCW(void) { //0x04 and 0x05 - adjust timers for degree
set direction on left wheel to reverse
set direction on right wheel to forward

}

/* Wheels forward at half duty cycle */

void WHEELS ForwardBothHalf(void) { //0x08
set left to half duty and forward
set right to half duty and forward

}

/* Wheels forward at full duty cycle */

void WHEELS ForwardBothFull(void) { /0x09
set left to full duty and forward
set right to full duty and forward

}

/* Wheels reverse at half duty cycle */

void WHEELS ReverseBothHalf(void) { /0x10
set left to half duty and reverse
set right to half duty and reverse

}

/* Wheels reverse at full duty cycle */

void WHEELS ReverseBothFull(void) { /0x11
set left to full duty and reverse
set right to full duty and reverse

ME218b: Lab 8 Pseudocode
Nina Joshi, Andi Kleissner, Eli Michaels, Elico Teixeira

